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Abstract

A multiscale approach to model the mechanical behaviour of blocky materials that exhibit microscale features is
proposed. From the description of these materials at microscopic level, as systems of interacting rigid elements, a for-
mula for the stored energy is given in order to derive the macroscopic constitutive equations of a linear elastic equiv-
alent multifield continuum. This continuum results to be a micropolar continuum suitable to describe the mechanical
behaviour of brick/block masonry, as well as jointed rocks or matrix/particle composites, accounting for the size, the
orientation and the arrangement of the elements. This multiscale approach proves to be effective also in the non-linear
framework. The material non-linear behaviour is represented through internal constraints derived from delimitations
imposed to the interactions of the block system. Some numerical examples show the correspondence between discrete
and continuum modelling, both in the linear and in the non-linear frame.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The continuous development of structural analyses’ tools concerning the behaviour of masonry-like
materials, in order to preserve historical manufacts and to study rocks mechanics problems, requires the
definition of models for gross behaviour of materials which show, at finer scales, heterogeneities of signif-
icant size and texture. Analogous problems concern the mechanics of complex materials, characterized by
the presence of different kind of heterogeneities like lattice defects (rigid or soft inclusions, voids, micro-
cracks, etc.) (Nemat-Nasser and Hori, 1993) or undergoing phase transitions (Fischer et al., 1994).
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A fundamental problem in the formulation of such models is the identification of suitable constitutive
laws capable to describe discontinuous or heterogeneous materials by means of homogeneous continua, fil-
tering enough information to provide a global description of the mechanical behaviour. Although the
homogenisation techniques have been considerably improved since long time (Hashin, 1983; Sanchez-
Palencia, 1987), the models proposed so far in this framework are generally based on classical continua
and exhibit some drawbacks (Anthoine, 1995; de Felice, 1995; Cecchi and Sab, 2002). For example, due
to the absence of scale parameters and appropriate kinematical descriptors, the use of a simple Cauchy
model (“of degree 1”’) makes impossible to distinguish the behaviour of media made of particles of different
size and orientation. This model turns out to be not suited to study, even in elastic regime, problems with
geometric or loading singularities that involve high stress and strain gradients (Trovalusci and Masiani,
1999, 2003). The main difficulties arise when the characteristic size of the body under consideration is of
the same order of magnitude of the size of the internal heterogeneities. The problem is further complicated
when non-linear and non-monotone stress—strain laws are required. In this case, ill-positioning of the field
equations as well as strongly mesh-dependent finite element solutions may arise (Read and Hegemier, 1984;
Simo, 1989; Sluys et al., 1993).

Enriched Cauchy continua are often employed in order to circumvent the above mentioned ill-condi-
tionings (Pijaudier-Cabot and Bazant, 1987, Needleman, 1988; Miihlhaus and Aifantis, 1991; Pijaudier-
Cabot, 2000), but the presence of non-standard strain measures (implying spatial or time derivatives of
order different than the second in the equations of motion) without corresponding stress measures leads
to thermodynamic inconsistency (Gurtin, 1965), unless resorting to the introduction of, more or less arti-
ficial, dissipation inequalities. Therefore it becomes necessary to define different kinds of models free from
such limitations but still capable to provide a description in terms of continuous media for materials
whose internal structure influences substantially the macroscopic behaviour (Miihlhaus, 1995; Eringen,
2001).

To this end, the so-called “multifield theory” provides a sound solution to the above mentioned difficul-
ties concerning the macroscale description of the complex materials with significant microscopic features
(Capriz, 1989; Mariano, 2001). The models developed in this framework have to be understood as continua
with different material levels: the ‘macrostructural’ level of the matrix and one or more ‘microstructural’
levels, characterized by the presence of descriptors additional to the standard ones. Therefore, non-stan-
dard strain and stress measures can be defined in a rational way, suitable scale parameters can be naturally
introduced and it can be easily shown that the thermodynamic consistency is ensured.

The applicability of such models relies on the possibility to define constitutive functions for all the
stress measures introduced. This problem has been studied for some particular microstructures—mate-
rials with continuous distributions of cracks, composite materials of short-fibre type, masonry mate-
rials (Trovalusci and Augusti, 1998; Mariano and Trovalusci, 1999; Trovalusci and Masiani, 1999,
2003; Trovalusci, 2003)—in an alternative way with respect to the classical homogenisation proce-
dures. In these works an integral procedure of equivalence to govern the transition between the micro
and the macroscale has been proposed. This procedure is based on the requirement that a micro and
a macro model of a given material spent the same mechanical power in corresponding velocity fields
and, differently from the homogenisation techniques, does not require the solution of a boundary
problem on a representative volume element. Using this approach however, additional criteria to se-
lect the suitable multifield continuum are required.

A basic issue when dealing with continuum homogeneous modelling of heterogeneneous and/or dis-
continuous materials is the selection of the most appropriate continuous model to grossly describe their
behaviour taking into account the features exhibited at finer scales. Although it not always obvious, espe-
cially in the presence of different kind of microstructures (inclusions, voids, interfaces, etc.), this choice is
generally made ‘a priori’ on the basis of phenomenological issues. In the work (Trovalusci and Masiani,
1999) this question has been faced and, in order to make this choice more objective, a criterion—based
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on the preservation of the materials symmetries in the transition from the macro to the microscale—has
been defined.’

In this work an energy equivalence procedure based on a multiscale approach is proposed. From the
description of the material as a lattice model, made of interacting micro-heterogeneities (‘micromodel’),
a formula for the strain energy is given in order to derive the macroscopic constitutive equations of an
equivalent multifield continuous model (‘macromodel’). The macromodel grossly represents the material
mechanical behaviour, not only taking into account the shape and the disposition of the internal elements
but also their size and orientation. This approach, is conceptually analogous to the power equivalence ap-
proach but it eliminates the necessity of additional criteria to select the proper macromodel. It is shown that
when the micromodel is adopted and the class of its admissible deformations selected, the macromodel is
defined. In this case the mechanical powers and the material symmetries of the two models naturally cor-
respond. This is similar to what proposed in the molecular theory of elasticity, which also aims to derive
macroscopic constitutive equations from the study of systems of material particles (‘molecules’) interacting
in various ways (Ericksen, 1977). Analogous approaches have been generally used in crystal lattice elasticity
(Askar, 1985; Ortiz and Phillips, 1999, cap. IV) and they still appear potential of making the multifield the-
ories motivated from a constitutive point of view. Moreover, based on non-quadratic energies of lattice sys-
tems, non-simple constitutive models can be derived suitable of describing complex materials accounting
for the presence of defects (Mura, 1987; Gallego and Ortiz, 1993).

In particular, attention is here focused on the constitutive modelling of masonry-like materials. For such
materials the original lattice model is made of rigid particles interacting in pair through forces and couples,
both having linear and non-linear response functions. It is shown that by assuming homogeneous deforma-
tions for the micromodel, accounting for simplicity only for short-range interactions, it is possible to give
an expression for the strain energy from which deriving the constitutive functions for all the stress measures
of the equivalent continuum. In this case the corresponding continuum results to be a continuum with rigid
local structure (micropolar continuum), whose linearised kinematical descriptors are the vector field of the
standard displacement and the skew-symmetric tensor field of the microrotation. Moreover, in order to take
into account the material non-linear behaviour, internal constraints for the macromodel are derived from the
knowledge of the failure conditions on the micromodel. The possibility to introduce constraints for the strain
energy, considering local discrepancies in the micromodel, is one of the main advantages of the energy the mul-
tiscale approach, that allows avoiding the definition of evolution laws and yield functions on the macromodel
and the snags to the operation related (Besdo, 1985; Miihlhaus, 1989; de Buhan et al., 2002).

Some numerical analyses are performed on two-dimensional masonry assemblages using a specific finite
element code, which supply linear and non-linear solutions for the multifield model. In order to show the
effectiveness of the micropolar model to describe blocky materials, the results are compared with the results
obtained using codes based on discrete modelling of such materials (Trovalusci, 1992; Baggio and Trovalu-
sci, 2000). In particular, it is shown how the presence of the microrotation field accounts for the relative
rotation among rigid elements with adequate accuracy. Such rotation, as shown experimentally, turns
out to be determinant in recognizing the collapse mechanisms of masonry structures.

2. The lattice (micro) model

In order to derive the elastic constitutive relationships for a continuum that can represent the macro-
scopic behaviour of masonry-like materials, a multiscale approach is adopted. The first step is the descrip-

! In particular, it has been shown that adopted a micromodel for a material the power equivalent macromodel that preserves the
same material symmetries is unique. In absence of such a criterion the equivalence procedure allows to identify any equivalent model
on condition than some terms were cut off, although they could play an important role (as for instance the mutual particles rotations
when a Cauchy model is adopted to describe rigid particles materials).
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tion of the material, at the microscopic level, as a system of rigid elements interacting in pair through forces
and couples. This hypothesis accounts for the higher deformability of the joints with respect to the defor-
mability of blocks. In the following we refer to this lattice model as ‘micromodel’.

In a linearised framework, the kinematics of the micromodel is described by two discrete fields: the vec-
tor field of the displacement of the centre, a, of the generic element A4, u’, and the skew-symmetric tensor
field of the (rigid) rotation of 4, W*. Considering two interacting elements, 4 and B, the strain measures of
the system are the relative displacement, u,, and the relative rotation, W,,, between two point, p* and .

respectively on 4 and B,
u, =u’ —u’ + W(p* —a) — W(p’ —b), M
W, =W - W’

Denoted with f“ and M the vector and the skew-symmetric tensor of the external forces and couples acting
on A respectively, the balance equations for the assembly write

Ny

> () +1=0

p:l

ZC" (' —p)— (0 —p") @]+ M =0, ()

for each element A4 of the system with
t+t =0
a b b a b a b b1 __
C+C -, —p)- @ -p)at]=0
for each pair of interacting elements 4 and B. In the above equations N, is the number of elements inter-
acting with 4, t; and CZ are the force and couple that each adjacent element B exerts on A, respectively.
Considering the material as periodic, or at least statistically homogeneous, a representative volume ele-

ment, referred to as the ‘module’, can be found. From the balance Egs. (2) and (3) the formula for the mean
internal power over the volume, V, of the module can be derived

iy W,) ;{; (tp-n,,+;cp-w,,)}, @

where the summation is extended to each pair of interacting elements of the module.
Assuming as response functions for the interactions between the pairs of elements, t, = t] and C, = C],
the linear elastic functions
t, = K,u,,
C, =KW,

3)

()

where K, and K, are symmetric constitutive tensors of the second and fourth order, respectively, the mean
strain energy function over the module can be written as a quadratic form

_ 1 1
&(u,, W,) = Y% Z (KP“p u, + D) KW, Wp)~ (6)
P

In many circumstances however, the behaviour of blocky materials is strongly influenced by the material
non-linearity, such as the low tensile strength and the frictional proprieties. Attention is focused on mate-
rials, like ancient masonry or jointed rock assemblages, made of dry-stacked elements or with joints filled
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by poor and scattered mortar, for which the lack of coherence and the frictional strength can be supposed
concentrated along the contact surfaces between blocks. In order to derive the constitutive relations for the
micropolar continuum also in the non-linear frame, tacking into account these features, delimitations on
the contact actions of the discrete assembly must be posed.

Let {m,;,m,,,n,} be an orthonormal basis for the contact surface between the pth pair of blocks, where
m,,;, m,, and n, are respectively two unit vectors tangent and one unit vector normal to the contact surface.
Considering plane contact surfaces, discretised with L, pairs of parallel linear edges defined by their unit
normals, m,,, with m,,-n,=0 and «=1,L,, the constitutive functions for the contact actions, t, and
C,, of each contact surface p of the module (4) are subjected to the following restrictions

H(I -n,® np)tpH <tang,(a, —t,-m,),

t,-n, < a,,

(7)

|Cpmpfx : n,,‘ < d;(ap —t,n,), a=11L,
|Cym,; - myy| < tan,d,fB,(a, —t,-n,),

where g, is the tensile strength of the material interposed between blocks; ¢, is the friction angle, d, and @,
are characteristic lengths and f, is a non-dimensional factor accounting for the shape of the pth contact
surface; (I — n, ® n,) is the projection tensor on the pth surface. The first and the last of the above inequali-
ties ensure that the tangential components of the contact force and the torsional component of the contact
couple, respectively, do not exceed the Mohr-Coulomb frictional strength. The second inequality makes
sure that the normal component of the contact force does not overcome the tension strength of the material
interposed between blocks. The third set of inequalities guarantees that the normal component of the con-
tact force is applied within the contact surface; these inequalities, if the contact couple is zero, imply the
second one.

The above delimitations characterise a discrete system made of rigid elements, supposed to have infinite
strength, in contact through surfaces, with bounded tensile strength and resistant to sliding by friction. In a
continuum smeared conception, the assumption that blocks cannot break does not appear too restrictive
especially if, as in this case, the geometry of the assembly, rather than the strength of the units, captures
the actual ultimate behaviour of masonry materials. Anyway, it would not be difficult to consider systems
of breakable elements.

3. The linear-elastic multifield (macro) model

Multifield models are continua capable to model complex media with different kinds of microstructure-
inclusions (rigid or soft), cracks, voids, interfaces between solid phases, etc.—retaining memory of the
material’s fine organization at different scales. The basic starting point is to consider the generic material
patch as a system and to introduce, already at the geometrical level of the description of the body, infor-
mation on the material microstructure. The material patch is characterized not only by its spatial position
(as in the mechanics of simple materials) but also by suitable descriptors of the microstructural morphol-
ogy, whose rate of change is associated to interactions that satisfy suitable balance equations and pose non-
trivial constitutive problems.

In order to represent the actual macroscopic behaviour of complex materials, a crucial step is the selec-
tion of the most appropriate multifield continuum for the description of the specific internal structure
exhibited at the considered microscale.

In this work the uncertainty about the definition of the continuum is by-passed following the approach
proposed in the molecular theory of elasticity (Ericksen, 1977), which aims at predicting macroscopic
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constitutive functions of continua equivalent to lattice systems. Whenever the original lattice model has
been defined, by selecting the admissible deformation fields for the micro model, it is possible to give an
expression for the strain energy from which the constitutive functions for the stress measures of the result-
ing equivalent continuum can be derived.

As usual in the molecular theory of elasticity, it is assumed that the elements of the lattice system de-
scribed in Section 2 are subjected to homogeneous deformations in such a way that the linearised kinemat-

ical fields have the affine representation
u’ = u(x) + Vu(a — x), 8)
W =W(x)+ VW(a —x),

with u and W a vector and a skew-symmetric tensor field, respectively. This hypothesis has intuitive inter-
pretation and can be considered valid if short-range interactions are accounted for. On the basis of Egs. (8),
the strain measures (1) of the lattice system can be expressed in terms of continuum fields

u,(Vu—W, VW) = (Vu—W)(a—b) + VW(a — x)(p* —a) — VW(b — x)(p’ — b),
W, (Vu— W, VW) = YW(a — b)

as well as the mean strain energy function over the module

©)

&§(Vu—W,VW) :%{(Vu—W) > K, [(Vu—W)(a—b) + VW(a —x)(p* — a)

—~VW(b—x)(p” —b)]® (a—b) + VW

> K,[(Vu—W)(a—b)+ VW(a—x)(p* - a)

— VWb -x)(p"—b)®[(p* —a)® (a—x) — (p”—b)®(b—x)]+%ZK,,VW(a—b)®(a—b)] }

(10)

Let now consider a closed ball N, of radius ¢ centred at x and of volume V(Njy), of the regular Euclidean
region occupied by the continuum. It is assumed that a stored energy function exists and, through the local-
ization theorem, coincides with the mean strain energy of the module

. 1 _
%ﬂm/]\ﬁadV.— §(Vu— W VW). (11)
Once derived the expression for the strain energy density, the type of the microstructure of the continuum is
sought. In this case, the stress measures of the continuum are identified as
0g(Vu — W, VW)

o(Vu—W)

:% Z {KP[(VU —W)(a—b)+VW(a—x)(p’—a) — VW(b—x)(p’ —b)| ® (a — b)},

S(Vu— W, VW) =

208(Vu — W, VW)
(VW)

S(Vu—W,VW) =
53 {Kp[wu—wxa—b) +VW(a - x)(p* —a) - YW(b —x)(p’ ~ D) ® [(p" — ) ® (a - x)

(phb)®(bx)]+%K,,VW(ab)®(ab)}. (12)
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After some algebraic manipulations, the constitutive functions for the stress measures can be written as

S =A(Vu—W)+BVW,

T (13)

S=B (Vu—W)+CVW,
where the elastic tensors A, B, and C, of the fourth, fifth and sixth order, respectively, have components
depending on the elastic constants of the matrix and on the shape, the size, the orientation and the arrange-
ment of the elements of the lattice system.? In particular, the tensor A does not contain any internal length
parameter while the tensors B and C have components depending also on the size of the elements. These
components are’

(A)ijhk = a(vaué_(vu)_a‘(vvuvjv Z{ ) (a - b)j})
B = a0 AW = 7 Sl =0 )~ 58" b))

© _ 20%(Vu— W, VW)
e 5(VW),,,0(VW)

mngq

5 S { (Rl = 0,0~ 0,0 = w0 =) = (6%, 0 = D), = )b ),

+ 53 Ko (a =) (a B |
(14)

The major symmetries hold in such a way that A,jhk = Aurijp» Byjnir = By and Cipgpung = Crungnia- Moreover,
if the material is centro-symmetric?, the tensor B is null and equations (13) are uncoupled.

The stress measures identified correspond to the stress measures of an anisotropic micropolar contin-
uum. In a linearised framework the kinematics of the multifield continuum is described by two fields:
the displacement vector, u, and the microrotation tensor, W. The linearised strain measures are the second
order strain tensor, Vu—W, and the so-called curvature tensor, VW, of the third order. Denoted with b and
B the density of body force and couple, respectively, from balance equations

divS+b =0,
: T (15)
divS—(S—-S")+B=0
the power density formula of this continuum is
(i, W) =S - (Vi — )+ Ls. ow. (16)

2 BT is the transpose of the tensor B such that, for each second order tensor A and each third order tensor A, BA- A =BTA - A.
3 Assuming an orthonormal basis {e;}, i = 1,1, the components of a tensor T of order # are

(Mitys, =T € Q€ @D,

4 The central symmetry is the material symmetry of any periodic assemblages of elements.
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Using Egs. (5) and (8) and considering the found constitutive equations (12) it can be recognized that the
density power of this micropolar continuum equals the mean power over the module of the lattice system
(4). Moreover, It can be easily shown that and that the material symmetries of the two models also
correspond.’

The identification of a micropolar continuum is a direct consequence of the hypothesis (8). If a different
class of admissible deformations for the lattice system is selected the stress measures of a different contin-
uum can be identified. For example, supposing the lattice system made of particles in contact (p* — p” = 0)
that cannot rotate one each other and then assuming as class of admissible deformations

u’ = u(x) + Vu(a — x),

W = W(x), (17)

with W = (Vu — Vu'), it can be shown that a Cauchy equivalent continuum can be identified.® It is worth’s
noting that the classical equivalent continuum cannot be obtained from the micropolar continuum only by
vanishing the size of the particles in the lattice system. It has been shown (Trovalusci and Masiani, 1999)
that when the length parameter goes to zero, B and C vanish but A does not coincide with the Cauchy elas-
tic tensor, unless the material belongs at least to the class of the orthotetragonal materials, like isotropic
materials.

3.1. Numerical examples

To investigate the effectiveness of the micropolar equivalent continuum in modelling the gross behaviour
of discontinuous block systems, some analyses were performed on two-dimensional block structures. The
unit vectors e; (horizontal direction) and e, (vertical direction) represent an orthonormal basis for these
structures. The walls examined are made of orthotropic texture of rectangular blocks, of size (4 x2)
10~" m, along e, and e, respectively.

The numerical solution for the Cosserat continuum was evaluated by means of a F.E. discretised
model. A specific three-node triangular element was formulated. This element has three degrees of
freedom per node: two in-plane translations and one in-plane rotation. The two components of dis-
placement and the rotations are assumed linear. All the corresponding strain measures are constant
except the non-symmetric strains, (Vu — W), =(Vu — W)e; ® e, and (Vu — W), = (Vu — W)e, ® e,
that are linear.

In order to make a comparison, the solution for the lattice model was also directly obtained. The algo-
rithm used to obtain the numerical solution is based on a model made of rigid blocks, described by ‘con-
straint equations’, interacting between interfaces, described by longitudinal, transversal and rotational
springs (Trovalusci, 1992).

As first example a wall of dimensions (8 x 8)m1, fixed on the basis and loaded by a constant field of body
forces whose density has the vertical and the horizontal components in the ratio 2:1, was analysed. Consi-
dering the orthonormal local basis {m,,n,} for the pth contact surface between blocks, where m,, and n,, are
respectively the unit vectors tangent and normal to the contact surface, the non-null constitutive constants
for the discrete model are:

5 The constitutive constants obtained (14) coincide, in the two-dimensional frame, with the ones obtained in the work (Trovalusci
and Masiani, 1996). In this work the elastic constant of a Cauchy continuum were also derived and they coincide with the ones
obtained using a classical homogenisation procedure (de Felice, 1995).

® The elastic constant of the equivalent Cauchy continuum coincide with the ones obtained using a classical homogenisation
procedure (de Felice, 1995).
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(Kp)mm

=K, -m,®m, = 1.00 - 10’ MN/m;(K,),, = K, -n, ®n, = 5.00 - 10’ MN/m,

(Kp)mnmn = Kp -m, by n, & m, & n, = 5.00 - 10 MNm.

The non-null elastic constants derived for the orthotropic micropolar continuum using equations (14) are:

A =A-eQe Re Qe =14.67- 10° MN/m27

Aypp=A-e:0eRe Qe =06.67- 10° MN/11127
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(A, =A e @6, ®e ®e = 1.34-10° MN/m?,
Ay =A-e;0e ®e ®e =9.34-10° MN/m?,
(O =C-e1@e®e @e ®e @e =2.00-10° MN,

Opn=C-eRe,0e,®e ®e, Qe =0.67- 10> MN.

In Fig. 1 the deformed shapes obtained for the discrete and the continuum model are shown.

Fig. 2 shows on the top side the contour lines of the vertical component of the displacement field for the
discrete model (u“),, left, and the continuum model (u),, right. On the bottom side the contour lines of the
rotations of the blocks (W9);,, left, and of the microrotation (W);,, right, are shown.

The same wall was analysed, always as a discrete system and as a micropolar continuum, under the ac-
tion of a concentrated vertical load, of intensity 2.0 - 107> MN, on the middle of the top edge. The contour
lines of the components of the discrete and the continuum solution are reported in Fig. 3.

All the results obtained for the Cosserat equivalent model are in good agreement with those obtained for
the discrete model.

4. The non-linear micropolar continuum

The proposed multiscale energy approach allows to define a way to treat, with enough simplicity and
accuracy, also the macroscopic behaviour of complex materials. Internal constraints for the macromodel
can be derived from the knowledge of the failure conditions on the micromodel (7), by-passing the not triv-
ial problem of the definition of a yield domain directly on the continuum model (Besdo, 1985; Miihlhaus,
1989) or of the derivation of a generalised strength criterion, solving an auxiliary yield design problem on a
representative cell of the micromodel (de Buhan et al., 2002).

In particular, using Egs. (7) and (8) and considering systems of blocks disposed according to the central
symmetry, the restrictions on the lattice model can be written in terms of strain measures of the macro-
model as follows

|(X=n, @n,)K,(Vu—W)(a—Db)|| <tang,(a, — K,(Vu—W)(a—b)-n,),
K,(Vu—W)(a—b)-n, < a,,

|K,(VW)(a —b)m,, -n,| < di(a, — K,(Vu—W)(a—b)-n,), =1L,
|K,(VW)(a — b)m,; - m,,| < tan ¢,d,8,(a, — K,(Vu—W)(a —b) -n,).

(18)

The strain energy of the continuum centro-symmetric material, supposed to be placed in the regular Euclid-
ean region C, is

6(Vu— W, VW) = ZIV/{W ZK (Vu—W)(a—b)+ VW~ ZKVWaf (ab)}.
(19)

and it is subjected to the restrictions
[[(XT—n, ®n,)K, ® (a—b)](Vu—-W)| < tan,(a, — (Vu— W) -K,n, @ (a—b)),
(Vu—W)-Kyn, ®(a—b) <ap,
[VW - K,m,n, ® (a—b)| <di(a— (Vu-W)-K,n,®(a—b)), a=1L,
|[VW - K,m,m, ® (a—b)| < tan ¢,d,f,(a, — (Vu—W)-K,n, @ (a—b)).
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These inequalities are obtained, after some algebra, from the inequalities (18) accounting for the symmetries
of the tensor K, and of the major symmetries of the tensor K,,.

The solution of the problem of such non-linear elastic materials could be directly obtained by searching
the minimum of the function & Vu — W, VW) subjected to the constraints (20). This problem could be
numerically faced, for instance, by way of a Monte Carlo code (Sansalone et al., 2004) or other optimisa-
tion approaches. However, the presence of Coulomb friction gives rise to non-linear and non-convex math-
ematical programming problems hard to be solved.” Otherwise, a classical way to solve the problem is to
resort to the theory of plasticity, as generally done in the past to study no-tension materials (Maier, 1990).
This general approach requires the definition of evolution laws for the continuum strain, or stress, variables
that are not so easy to be found, especially when the macromodel is provided with a microstructure. A way
to derive these laws has been indicated in the work (Trovalusci and Masiani, 1997) in which the strain rates
of the micropolar continuum, equivalent to a rigid-particle system with non-linear interfaces, were identi-
fied by defining the yield domain in the lattice micromodel. Using the macroscopic flow rules, identified in
terms of the geometry of the discrete system, the solution of the elasto-plastic problem can be then obtained
using standard techniques.

4.1. The algorithm of solution

To solve the continuum problem, avoiding the above mentioned difficulties, this work proposes an alter-
native approach that exploits the advantages of the molecular origin of the continuum model. The algo-
rithm of solution elaborated consists in a step-by-step procedure, based on finite element technique, that
solves the linear-elastic problem and checks the static admissibility directly on the lattice system. In this
framework it is easier to modify the constitutive functions of the contact actions in order to take into ac-
count the material non-linear behaviour.

The set-up algorithm works for small load steps as follows.

(i) Given a load step, the continuum problem is solved using the linear Finite Element code, mentioned
in Subsection 3.1, providing the strain increments, A(Vu — W), A(VW).

(i1) For each finite element the compatibility of the contact actions is checked through inequalities (20). If
the compatibility is not fulfilled the constitutive tensors in the module of the lattice system, K, and K,,,
are modified by erasing the relevant components. Consequently, the corresponding components of the
contact forces and couples are maintained equal to their limit values, as their increments
At, = K,A(Vu — W)(a—b) and AC, = K,A(VW)(a — b) vanish.

In particular: if the second of the inequalities (20) is not fulfilled (opening) it is assumed

K,=0, K,=0=At,=0, AC,=0;

if the ath inequality of the set of inequalities (20c) is not verified (rozation) it is assumed
K,nm,, = Km,n,=0= AC,m,, -n,= -AC,m,, -n, =0, o=1,L,;

if the inequality (20a) or one of the inequalities (20d) is not verified (sliding) it is assumed

I-n,®n,)K,=0, = (I-n,®n,)At, =0,

Kpmplmpz = Kpmpzmpl = 0, = ACpm,,z -m, = —ACpmpl -my; = 0.

7 The problem of non-linear and non-convex mathematical programming for discrete systems of rigid blocks with no-tension and
frictional constraints has been faced in the work (Baggio and Trovalusci, 2000).
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(ii1) Using the obtained expressions (14), the components of the constitutive tensors of each finite element
are modified to take into account the “damage” defined at point (ii) and then, with the usual tech-
niques, a new local stiffness matrix is evaluated.

(iv) The load is increased and the algorithm goes back to point (i).

The cycle stops at the end of the load path or when it is no longer possible to find a balanced solution to
the field problem.

4.2. A numerical example

As sample problem a masonry wall, of dimensions (4 x 4)m, made of the same orthotropic blocks texture
of Section 3 was analysed. The wall, fixed on its basis, was subjected to a vertical body force, the self-
weight, and to a monotonically increasing horizontal body force, proportional to the vertical force through
the factor A. This problem can be interpreted as a simplified modelling of the seismic actions through static
forces.

In this case, considering the orthonormal basis {m,,n,} for the pth contact surface between blocks, the
non-null constitutive constants for the micromodel are:

(Kp)mm =K, -m,®m, =1.50- 10° MN /m; (Kp)nn =K,n,®n, =3.00- 10° MN/m,
(Kp)mnmn = K.U : mp ® np ® mp ® np - 300 . 10 MNm
and, from equations (14), the non-null elasticities of the macromodel are:

(A)=A e ®e ®e ®e =10.00-10° MN/m?,
Ay =A-e;0e,@e;®e; =4.00-10° MN/m?,
(A, =A-e ®e;, e ®e; =2.00-10° MN/m?,
Ay =A-e;2e ®e, @e = 8.00-10° MN/m?,
(O =C-e@e;0e @e @e; ®e; = 1.20-10° MN,

(COmn=C-e10e,0e,Re Qe Re; =040 - 10> MN.

The tensile strength at the interfaces and the friction angle are assumed constant: a,=1" 1072 MN;

¢, =0.6.
The micropolar solution was performed using the described F.E. algorithm (Section 4.1.) considering the
yield conditions (20) that in the two-dimensional frame reduce to

|(Vu—W)-K,m,® (a—b)| < tan¢,(a, — (Vu—W)-K,n,® (a—b)),
(Vu—W) -K,n,® (a—b) <a, (21)
|[VW - K,m,n, ® (a —b)| <d,(a — (Vu—W)-K,n,® (a—b)),
where d, =2 - 10~" m is the constant length of the contact surfaces. By increasing the load factor, 4, till the
value corresponding to the last balanced solution, the collapse multiplier obtained was 4. = 0.339.

In order to make a qualitative comparison, the solution for the discrete model was also directly obtained
using the algorithm presented in (Baggio and Trovalusci, 2000). This algorithm performs non-standard lim-
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Fig. 4. Wall with body forces, non-linear solution. Deformed shape and displacement vectors of the blocks’ centres evaluated by
interpolation.

it analysis of rigid blocks’ systems interacting through no-tension and frictional interfaces solving a non-
linear and non-convex mathematical programming problem. Fig. 4 shows on the left side the collapse
mechanism obtained for A, = 0.354.

In the right side of Fig. 4 the displacement fields of the micropolar FEM solution is represented by
means of the displacements vectors of the centres of the blocks, evaluated by interpolation of the found
nodal displacements.

In order to have also a quantitative comparison, as for the linear examples examined, the discrete pro-
blem was also solved using the computer code presented in the work (Trovalusci, 1992) considering the sys-
tem of rigid blocks interacting through non-linear longitudinal, transversal and rotational springs. In this
case the found collapse load multiplier, corresponding to the last balanced solution, is 4. = 0.341.

In Fig. 5, on the top size, the contour lines of the norm of the displacement fields for the discrete model
|u?|, left, and for the continuum model |u|, right, are reported. On the bottom side the contour lines of the
rotations of the blocks (W9);,, left, and of the microrotation (W);,, right, are shown.

Also in the non-linear framework, the results obtained for the Cosserat macromodel are in good agree-
ment with the results obtained for the discrete micromodel. All these results can finally be compared with
the experimental result reported in (Trovalusci and Masiani, 2003), for which the collapse value is
Ae=0.35.

5. Final remarks

The macroscopic behaviour of materials with heterogeneities, regularly disposed and significant in size,
can be studied both at the macro and microscales.

A multiscale approach, based on the assumptions of the molecular theory of elasticity, has been pro-
posed in order to model the macroscale behaviour of such materials retaining memory of the features exhib-
ited at finer scales. Following this approach, the constitutive model for an equivalent homogeneous
continuum is “naturally” defined resulting, in most of the cases, in a multifield model with non-standard
strain and stress measures always thermodynamically consistent.

For example, for the blocky materials studied in this paper, the equivalent macromodel results to be
a micropolar continuum with response functions completely defined from the characteristics of the
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Fig. 5. Wall with body forces, non-linear solutions. Contour lines of the norm of the displacement fields (top) and of the local rotation
fields (bottom).

micromodel. This is true even for the non-elastic response functions, which can be defined with a coherent
approach at the microscale of the blocks better than they can, through classical definitions, at the macro
scale.

The proposed method, which allows finding the non-elastic solutions compatible with the proper con-
straints for the constitutive functions at the microscale, has the advantage to take into account non-elastic
behaviours, such as no-tension and frictional, with a clear mechanical meaning.

Numerical comparisons with both non-standard limit analyses and experimental tests confirm these
results.
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